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Alloy performance under thermo-mechanical loads

Let’s have a look into a turbine blade made from a Ni superalloy

Al

Ni

Ni or Al (random)

 What mechanical loads does
the turbine blade experience?

 At what temperatures is the
turbine blade operated? For
how long?

 Are there further
environmental influences that
need to be considered?

 Why is Ni the material of choice
for such service conditions?

 What is the (mechanical) 
reason for this particular
microstructure
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Mechanical loading of alloys
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 In many applications, a superposition of the loads occurs (e.g. static + cyclic)
 These loading conditions can occur at low (T<0.4Ts [K]) or at high (T>0.4Ts [K]) temperatures
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Static loading – the stress-strain curve

Phase 1: elastic (reversible) deformation
Phase 2: homogeneous plastic deformation (irreversible)
Phase 3: strain localisation, necking and final rupture

/Ashby & Jones, Engineering Materials 1/
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Cyclic deformation and fatigue
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 The fatigue performance of an alloy is characterized by S,N- or Wöhler-curves
 The origin of fatigue failure is the localized and accumulated micro-plastic deformation
 Fatigue is failure under applied cyclic stress

 Responsible for 90% of mechanical engineering failures
 Possible failure of components for𝜎𝜎𝑚𝑚𝑎𝑎𝑎𝑎 < 𝜎𝜎𝑦𝑦
 Brittle fracture w/o pronounced macroscopic deformation also for ductile materials (no

warning)
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Creep

 Creep is the time-dependent plastic deformation under a constant stress at 
elevated temperatures, which can result in sudden catastrophic failure

 Creep can occur at even at very low mechanical loads significantly below the 
static yield stress (e.g. dead weight of the component, centrifugal forces in 
rotating parts)
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Thermo-mechanical fatigue – creep fatigue

 Cyclic heating/cooling of a part leads to cyclic expansion/contractions, which can 
lead to part failure

 Superposed thermal and cyclic loading leads to accelerated damage of the part

Isothermal holding

w/o with

100CrMo9-10

No. of cycles until fracture
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Plastic deformation – dislocations

 Plastic deformation in metals and alloys occurs by dislocation movement
 The dislocation will move if the shear stress acting on the dislocation is larger than

the intrinsic stress of the crystal lattice, the so-called Peierls-Nabarro stress

/Ashby & Jones, Engineering Materials 1/

edge screwdislocation
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Plastic deformation – slip systems

 Dislocation movement occurs on crystallographic planes with highest packing density (slip
planes) along the direction with highest packing density (slip direction)

 Slip plane + slip direction = slip system
 The main (primary) slip systems in metals are

fcc: 111 < 110 > ; hcp: 0001 < 11�20 > ; bcc: 110 < 111 >
 Slip systems with almost densest packing densities might be also activated (secondary slip

systems)
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Plastic deformation – polycrystals

 In the case of plastic deformation of a polycrystal to any arbitrary shape, at least 5 different 
slip systems need to be activated per grain (von-Mises criterion)

 The relationship between the externally applied normal stress σ and the average shear
stress τ is: 𝜎𝜎 = 𝑀𝑀𝑖𝑖𝜏𝜏

 Depending on the grain orientation in fcc materials with slip systems {111}<110> and bcc 
materials with slip systems {110}<111> the values for Mi are

 The average value 𝑀𝑀𝑇𝑇 = 𝑀𝑀𝑖𝑖 = 3.06 is the Taylor factor
 For a polycrystal with random grain orientation: 𝜎𝜎 = 𝑀𝑀𝑇𝑇𝜏𝜏 = 𝑅𝑅

2.27 < 𝑀𝑀𝑖𝑖 < 3.67

External load Material resistance
against plastic deformation
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Strengthening mechanisms in metals and alloys

 Structural alloys have to withstand high loads without plastic deformation, i.e. the
movement of dislocations must be hindered

 This can be achieved by activating one or more of the following strengthening
mechanisms
 Dislocation hardening/strengthening
 Solid solution strengthening
 Grain boundary strengthening
 Particle strengthening (precipitation/dispersoid strengthening)
 Grain orientation (texture) strengthening
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Dislocation strengthening

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛼𝛼1𝐺𝐺𝐺𝐺 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡

 Moving dislocations have to overcome the residual 
stress field of other dislocations

 This leads to a material resistance

α1: constant
G: shear module
b: contribution of the Burger’s vector of a dislocation
ρ𝑡𝑡𝑡𝑡𝑡𝑡: total dislocation density

 Dislocation hardening can be achieved in all metals by
cold working (e.g. cold rolling, drawing, hammering etc.)

 During plastic deformation, new dislocations are
generated according to the Frank-Read mechanism
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Dislocation strengthening
 The dislocation density can be increased to ~1012 1/cm2

 The residual stress fields of glide dislocations are interacting with
the residual stress fields of other dislocations

 This leads to an increase of the strength and a decrease of the
ductility

 The strengthening effect depends on
 The strain hardening performance
 The range of uniform deformation

 fcc metals (e.g. austenitic steel) exhibit in general a more
pronounced dislocation hardening than bcc (ferritic steel) or hex 
metals

 Cold working/dislocation strengthening is only useful if the service
temperature is below the recrystallization temperature

 Examples:
 Crane wires:   Rm = 1400…2200 MPa
 Piano strings: Rm = 3600 MPa

Shear stress τ [MPa]
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Solid solution strengthening

𝑅𝑅𝑠𝑠𝑠𝑠 = 𝛼𝛼2𝐺𝐺 𝑐𝑐′ 𝑛𝑛

 Moving dislocations have to overcome the residual 
stress field of solute atoms on the slip plane

 This leads to a material resistance

α2: constant
G: shear module
n: strengthening exponent (0.5<n<1)
c’: concentration of solute atoms



Advanced Metallurgy – 2024/25 Mechanical Properties & Strengthening Mechanisms 15

Grain boundary strengthening

𝑅𝑅𝑔𝑔𝑔𝑔 =
𝑘𝑘
𝑑𝑑

 Moving dislocations pile up at grain boundaries
 The stress fields of these dislocations

 interact with other gliding dislocations
 induce slip activities in neighbouring grains

 This leads to a material resistance

k: material and temperature dependent parameter
(Hall-Petch-parameter)

d: average grain diameter
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Particle strengthening

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛼𝛼3𝑓𝑓 2𝑟𝑟, 𝑙𝑙, 𝛾𝛾𝑖𝑖𝑖𝑖

 Particles in the grains are obstacles for moving
dislocations

 The dislocations must  
 cut through ptc. (coherent)
 move around ptc. ((semi-)coherent/incoherent)

 This leads to a material resistance

coherent

semi-
coherent

incoherent

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛼𝛼4
𝐺𝐺𝐺𝐺
𝑙𝑙 𝑓𝑓 𝑟𝑟

α3,4: constants
G: shear module
B: contribution from Burger’s
vector

l: average particle spacing
r: average particle radius
𝛾𝛾𝑖𝑖𝑖𝑖: interfacial energy
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Grain orientation strengthening

 In a polycrystal, dislocation slip occurs only in 
grains for which the slip systems are oriented
with regard to the main loading direction

 A preferred orientation of certain grain families
(texture) results in softening/strengthening

 This leads to a material resistance

𝑀𝑀𝑇𝑇∗: orientation dependent Taylor factor
𝑀𝑀𝑇𝑇: Taylor factor

𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑀𝑀𝑇𝑇∗
𝑀𝑀𝑇𝑇

𝑅𝑅
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Additvity of strengthening mechanisms

 If several strengthening mechanisms are applied, then the overall material 
resistance against plastic deformation is the sum of all individual resistances

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑅𝑅𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑔𝑔 + 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝

𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑀𝑀𝑇𝑇∗
𝑀𝑀𝑇𝑇

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑅𝑅𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑔𝑔𝑔𝑔 + 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝

and when considering the texture influence
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High temperature plasticity

 At temperatures above 0.4 Ts [K], a transition from time-independent to time 
dependent plastic deformation occurs

 Dislocations are thermally activated and are continously moving
 Mechanical stresses consist of a thermal part 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, which can be thermally

activated and an intrinsic athermal part 𝜎𝜎𝑖𝑖
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜎𝜎𝑖𝑖 with 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓(𝑇𝑇, ̇𝜀𝜀) and 𝜎𝜎𝑖𝑖 ≠ 𝑓𝑓(𝑇𝑇, ̇𝜀𝜀)

 The athermal part 𝜎𝜎𝑖𝑖 includes
 Residual stresses induced by the

dislocation

 The thermal part 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 includes 
 The Peierls stress
 Cutting stress
 Cross slip stress

 Recovery through annihilitaion of dislocations, recrystallization and grain growth
can significantly alter the microstructure
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High temperature plasticity

 The yield stress decreases with increasing T  the resistance against plastic deformation
(i.e. dislocation movement) is decreased

 The following dislocation movement mechanisms are active
 Dislocation glide is facilitaed because of a decreased Peierls stress at high T
 Dislocations can leave their primary slip plane and move on other slip planes due to thermally

activated climbing of edge dislocations or cross slip of screw dislocations

/S.G. Hong,, J. Nuclear Mater. 328(2-3) (2004) 232-242/

Edge dislocation climb Cross slip
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Time dependent plasticity - creep

 Creep is the time-dependent plastic deformation under a constant stress at elevated
temperatures, which can result in sudden catastrophic failure

 Creep can occur at even at very low mechanical loads significantly below the static
yield stress (e.g. dead weight of the component, centrifugal forces in rotating parts)

 Creep is more pronounced with increasing loads and increasing temperature

X40CoCrNi 20 20. T = 750°C
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Creep curves

 Primary creep
 decreasing creep rate ̇𝜀𝜀, hardening because of increasing

dislocation density

 Secondary creep
 ̇𝜀𝜀 minimal and constant, softening because of recovery processes

(dislocation annihilation)
 Cross slip and climb are activated
 Diffusion of vacancies
 Overall, equilibrium between hardening (formation of

dislocations) and softening processes

 Tertiary creep
 Increasing ̇𝜀𝜀, pronounced material damage
 Cracks at grain boundary triple points (high σ, short t)
 Pores on grain boundaries ⊥ loading direction (low σ,  long t)
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Creep deformation mechanisms

 At low/medium T and high σ (below YS) 
 Plastic deformation due to dislocation glide and twinning

 At low/medium T and medium σ (below YS) 
 Power law creep due to cross slip of screw dislocation and climb

of edge dislocations ̇𝜀𝜀 = 𝐴𝐴𝜎𝜎𝑛𝑛 (Norton)

 At medium T and low/medium σ
 Diffusional creep, grain boundary diffusion (Coble)

 At high T and low/medium σ
 Diffusional creep, bulk (lattice) diffusion (Nabarro-Herring)
 Grain boundary sliding
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Particle strengthening at high T

 Mechanisms for dislocations to pass precipitates/particles

climb
glide

Mechanism Temperature (semi-) 
Coherent IF

Incoherent IF

Cutting 0K – Ts Yes No

Bowing/looping 0K – Ts Yes Yes

Climbing >0.4 Ts Yes Yes

Cutting

semi-
coherent
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High temperature deformation
 The RT strengthening mechanisms are only effective within limits
 Dislocation strengthening not efficient due to rapid recovery and re-crystallization
 GB strengthening

 small grainsmany GB’s for diffusion
 Large grains preferred

 Only ss and particle strengthening are efficient at elevated T

Dislocation
strengthening

Grain boundary
strengthening

Solid solution
strengthening

Particle
strengthening

<0.4 Ts strong medium medium/strong medium/strong

>0.4 Ts

Only temporal
strengthening;
Can induce re-

crystallization and grain
refinement

Fine grains lead to
decrease of strength medium medium/strong
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